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Abstract In the present work, QSAR models for predicting
the activities of ursolic acid analogs against human lung (A-
549) and CNS (SF-295) cancer cell lines were developed by
a forward stepwise multiple linear regression method using
a leave-one-out approach. The regression coefficient (r2)
and the cross-validation regression coefficient (rCV2) of
the QSAR model for cytotoxic activity against the human
lung cancer cell line (A-549) were 0.85 and 0.80, respectively.
The QSAR study indicated that the LUMO energy, ring count,
and solvent-accessible surface area were strongly correlated
with anticancer activity. Similarly, the QSAR model for
cytotoxic activity against the human CNS cancer cell
line (SF-295) also showed a high correlation (r200.99
and rCV200.96), and indicated that dipole vector and
solvent-accessible surface area were strongly correlated
with activity. Ursolic acid analogs that were predicted to
be active against these cancer cell lines by the QSAR
models were semisynthesized and characterized on the basis
of their 1H and 13C NMR spectroscopic data, and were then

tested in vitro against the human lung (A-549) and CNS
(SF-295) cancer cell lines. The experimental results obtained
agreed well with the predicted values.

Keywords QSAR . Ursolic acid analogs . In vitro cytotoxic
activity . ADME

Introduction

Cancer is a growing public health problem, with an estimated
incidence of about six million new cases per year globally. It is
the second most important cause of death around the world,
and half of all cancer-related deaths occur in developed
countries [1]. Medicinal plants are often investigated as a
source of new drugs for treating cancer; indeed, 60% of the
anticancer drugs that have been approved by the FDA
originate from plants [2].

The brain and spinal column comprise the central
nervous system (CNS), where all of the vital functions
of the body are controlled. When tumors arise in the
central nervous system, they are difficult to treat, because the
tissues surrounding the tumor may play a vital role in normal
body function, so it is highly undesirable to risk affecting them
through surgery or radiotherapy. Another type of cancer, lung
cancer, is a leading cause of death in both men and women,
and occurs most commonly between the ages of 45 and 70.
Hence, the discovery of new drugs for treating CNS and lung
cancers is an important task.

Triterpenes exist abundantly in the plant kingdom. Over
the past few years, triterpenoids from higher plants have
been shown to possess a wide range of biological activities
[3], such as cytotoxic [4], antitumor [5], antiviral [6], anti-
inflammatory [7], and anti-HIV [8] activities. Ursolic acid is
a ubiquitous triterpenoid in the plant kingdom, in medicinal
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herbs, and is an integral part of the human diet [3]. It has
shown significant cytotoxicity against various tumor cell
lines [7, 8], and in recent years a large number of ursolic
acid analogs with anticancer activity have been synthesized
[9, 10]. Some ursane triterpenoids with modified A and C
rings have been reported to possess high inhibitory activities
against nitric oxide production. This suggests that these
compounds could potentially be used as cancer chemopre-
ventive drugs, as excessive production of NO, which is
closely related mechanistically to carcinogenesis, can
destroy functional normal tissues [11–15]. However, ursolic
acid analogs tend to have high molecular weights and
solubility issues [16], which is why they have not been
thoroughly explored in terms of their cytotoxic activities. In
this regard, a good understanding of their chemical properties
at the molecular level—such as their lipophilic, steric, and
electronic characteristics—may provide important infor-
mation on the anticancer properties of these analogs.

The quantitative structure–activity relationship (QSAR)
approach has emerged as a promising tool for the effective
screening of potential drugs. The ultimate goal of QSAR
studies is to correlate the biological activities of a series of
compounds with some appropriate descriptors. Among the
different descriptors that can be used to describe the
electronic properties of molecules, the dipole vector,
the ring count, and the solvent-accessible surface area
have been found to be useful in several QSAR studies
[7, 8]. However, the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital
(LUMO) energies have been shown to correlate particularly
well with various biological activities [17]. As part of our drug
discovery program, in the study described in this paper, we
developed QSAR models for predicting the activities of
ursolic acid analogs against human lung (A-549) and CNS
(SF-295) cancer cell lines. A total of 41 virtual analogs of
ursolic acid were screened using these developed QSAR
models, and the models predicted that a few of these analogs
of ursolic acid should possess high anticancer activities. To
validate the predictions made by the models, we then carried
out the semisynthesis of the analogs of interest in the wet lab,
and experimentally evaluated their in vitro anticancer
activities against the human lung (A-549) and CNS (SF-295)
cancer cell lines. In this way, we designed ursolic acid analogs
with enhanced anticancer activities using QSAR models and
in silico pharmacokinetic and PK compliance (ADME).

Materials and methods

Molecular modeling parameters and energy minimization

Molecular construction, geometry optimization, and energy
minimization of ursolic acid analogs was carried out using

SYBYL-X 1.3 (Tripos, St. Louis, MO, USA) on an HP
xw4600 workstation with an Intel Core 2 Duo E8400
(3.2 GHz) processor and 4 GB of RAM, running the Red
Hat® Enterprise Linux 4.0 (32-bit compatible) operating
system (Silicon Graphics Inc., Mountain View, CA, USA).
The Tripos force field [16] and Gasteiger–Hückel charges
were used for energy minimization. 2D structures were
converted to 3D structures using the program Concord 4.0.
The maximum number of iterations performed in the minimi-
zation was set to 2000.Minimization was terminated when the
energy gradient convergence criterion of 0.05 kcal mol−1 Å−1

was reached. Further geometry optimization was carried out
with the MOPAC 6 package using the semiempirical PM3
Hamiltonian method [18, 19].

A total of 36 compounds/drugs (Table 1) were added to
the training set that was used to develop the QSAR model
for activity against the human lung cancer cell line (A-549),
while 26 compounds/drugs (Table 2) were employed in the
training set to develop the QSAR model for activity against
the human CNS cancer cell line (SF-295), based on 50
chemical descriptors. Selection was made on the basis of
structural/pharmacophore or chemical class similarity, in
order to include a diverse set of data rather than only
compounds from the same family. Similarly, in order to
select the best subset of descriptors, highly correlated
descriptors were excluded through covariance analysis
using a correlation matrix (see the “Electronic supplementary
information,” ESM, files 1 and 2). These descriptors were
used for model development utilizing a forward stepwise
multiple linear regression method. The derived QSARmodels
had high regression coefficients. The QSAR models were
successfully validated through the use of random test set
compounds, and the robustness of their predictions were
validated through the crossvalidation coefficient.

Selection of structural chemical descriptors
for QSAR modeling

The biological activity of an ursolic acid analog can be
expressed quantitatively as in the concentration of that
substance which is required to achieve a certain biological
response. Additionally, when physicochemical properties or
structures are expressed numerically, it is possible to form a
mathematical relationship between the two. This mathematical
expression can then be used to predict the biological responses
to other chemical structures [20–23]. Before novel compounds
are tested experimentally as potential drugs, predicting their
toxicities/activities allows us to calculate the risk factors asso-
ciated with administering them. A QSAR model ultimately
helps to predict these important parameters (i.e., IC50 and LD50

values). Some of the important chemical descriptors used in
multiple linear regression analysis were: atom count (all
atoms), atom count (carbons), atom count (hydrogens), atom
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Table 1 Structures and experimental and predicted activities of the compounds included in the training set used to develop a QSAR model for
activity against a human lung cancer cell line (A-549)

S.No. Structure Exp. log 
IC50 
(µM)

Pred. log 
IC50 
(µM)

Residual Reference

1.

O

OH

OH O

HO

2.009 1.980 0.029 1

2.

OH

OH

OH O

HO

1.982 2.416 -0.434

3. OH

O O

HO OH

O

H
H

OH

HO H

HO

H

HO H

1.979 1.784 0.195

4.

O

O

O

OH

OH

OHO

HO

O

HO

2.107 2.180 -0.073

5.

N

N

S

O

H

H

HO

O

NH2

F

2.093 2.124 -0.031
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Table 1 (continued)

6.

O

O

OH

H

OH

O

OH

2.004 1.926 0.078

7.

O

O

OH

OH

HO

OH

HO

1.855 1.798 0.057

8. O

O

OH

OH

O

2.111 1.873 0.238

9.

O

OH

OH O

HO

1.949 1.800 0.149

10.

O

O

OH

OH

HO

OH

1.804 1.642 0.162

11.

O

O

OH

HO

OH

HO

1.906 1.845 0.061

S.No. Structure Exp. log 
IC50 
(µM)

Pred. log 
IC50 
(µM)

Residual Reference
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Table 1 (continued)

12. O

O

OH

OH

HO

2.021 1.844 0.177

13.

O

O

OH

OH

1.989 1.711 0.278

14.

O

O

OH

OH

HO

HO

1.894 1.899 -0.005

15.

O

O

OH

HO

HO

OH

OH

1.661 1.672 -0.011

16.

O

O

OH

HO

HO

OH

OH

HO

1.716 1.791 -0.075

17. O

O

OH

HO

1.972 1.941 0.031

S.No. Structure Exp. log 
IC50 
(µM)

Pred. log 
IC50 
(µM)

Residual Reference
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Table 1 (continued)

18.

O O

O

H

O

O

OH
H

0.079 0.622 -0.543 4

19.

O

O

OH

1.9 1.601 0.299 5

20.

COOH

OH

1.501 2.042 -0.541 2

21.

O

O

OH

Br

0.78 0.498 0.282 5

22.

COOH

OO

OH

O

O

OH

OH

OH

OH

OH

0.999 0.941 0.058 2

23.

O

O

OH

1.29 0.930 0.36 5

24.

COOH

OO

OH

O

O

OH

OH

OH

OH

OH

OH

0.984 0.900 0.084 2

S.No. Structure Exp. log 
IC50 
(µM)

Pred. log 
IC50 
(µM)

Residual Reference
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Table 1 (continued)

25.

O

N

OH

OH

1.661 1.478 0.183 5

26.

O O

O

H

O

H

OH

O

0.23 0.627 -0.397 4

27.

COOH

O

OH

O

OO

OH

OH

OH

OH

OH

OH

1.039 1.102 -0.063 2

28.

COOH

OO

O

O

OH

OH

OH

OH

OH

OH
OH

0.947 0.772 0.175 2

29.

O
O

NH

O

O 1.467 1.582 -0.115 5

30.

COOH

O

OH

O

OO

OH

OH

OH

OH O

O

OH

OH

OH

0.886 0.262 0.624 2

31.

O
O

O

O

1.309 1.491 -0.182 5

S.No. Structure Exp. log 
IC50 
(µM)

Pred. log 
IC50 
(µM)

Residual Reference
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count (oxygens), bond count (all bonds), minimum energy of
conformation (kcal mol−1), connectivity index (order 0,

standard), connectivity index (order 1, standard), connectivity
index (order 2, standard), dipole moment (debyes), dipole

Table 1 (continued)

32.

OO

O

OH

O

OH OH

OH

OH

O

OH

OH

OH

1.008 0.539 0.469 6

33.
O

O

OH

OH
OH

OH

OH

H

0.683 1.236 -0.553 3

34.

CO

O

O

O

O 0.991 0.998 -0.007 7

35.

Adriamycin
O

HO

OH

OH

O

O

OO

HO

NH2

O

HO

-0.125 0.012 -0.137 4

36.

Paclitaxel

O

ONH

OH

O

O OH

OH

O

O

H

O

O

O

O

O

-1.824 -1.121 -0.703

S.No. Structure Exp. log 
IC50 
(µM)

Pred. log 
IC50 
(µM)

Residual Reference
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Table 2 Structures and experimental and predicted activities of the compounds included in the training set used to develop a QSAR model for
activity against a CNS human cancer cell line (SF-295)

S.No. Structure Exp. log IC50 (µM) Pred. log IC 50 (µM) Residual Refere
nce

1.

O
N+

O

OH

N+

H

Pt2-
Cl

Cl

0.241 0.907 -0.666

1

2.

O
N+

O

OH

N+

H

Pt2-
Cl

Cl

1.412 1.209 0.203

3.

O
N+

O

OH

N+

H

Pt2-
Cl

Cl

O
1.418 0.785 0.633

4.

O
N+

O

OH

N+

H

Pt2-
Cl

Cl

0.898 1.325 -0.427

5.

O
N+

O

OH

N+

H

Pt2-
Cl

Cl

1.072 1.847 -0.775

6.

O
N

O

OH

N

H

0.954 0.957 -0.003

7.

O
N

O

OH

N

H

0.146 0.104 0.042
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Table 2 (continued)

8.

O
N

O

OH

N

H
O

O

0.398 0.329 0.069

9.

O
N

O

OH

N

H

0.041 0.648 -0.607

10.

O
N

O

OH

N

H

0.23 1.075 -0.845

11. O

O

O

NH
H

H

H
NO2

-0.086 -0.062 -0.024

212. O

O

O

NH
H

H

H
Cl

0.121 0.105 0.016

13. O

O

O

NH
H

H

H
Br

0.262 0.190 0.072

14. O

O

O

NH
H

H

H
OCH3

0.045 0.064 -0.019

S.No. Structure Exp. log IC50 (µM) Pred. log IC 50 (µM) Residual Refere
nce
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Table 2 (continued)

15. O

O

O

NH
Br

H

H
Br

0.26 0.303 -0.043

16. O

O

O

NH
H

Cl

H
Cl

0.689 0.149 0.54

17. O

O

O

NH
NO2

H

H
OCH3

0.248 -0.168 0.416

18. O

O

O

NH
H

NO2

H
F

0.017 -0.196 0.213

19. O

O

O

NH
NO2

H

H
H

0.25 -0.266 0.516

20. O

O

O

NH

H

H
NO2

0.267 -0.006 0.273

S.No. Structure Exp. log IC50 (µM) Pred. log IC 50 (µM) Residual Refere
nce
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Table 2 (continued)

21. O

O

O

NH
OCH3

H

H3CO
H

-0.409 -0.050 -0.359

22. O

O

O

O

0.636 -0.531 1.167

23. O

O

O

O

0.53 -0.068 0.598

24. O

O

O

O

0.36 -0.090 0.45

25.

O

O

O

-0.041 -0.978 0.937

26. O

O

O

0.199 -1.285 1.484

S.No. Structure Exp. log IC50 (µM) Pred. log IC 50 (µM) Residual Refere
nce
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vector X (debyes), dipole vector Y (debyes), dipole vector Z
(debyes), electron affinity (eV), dielectric energy (kcal mol−1),
steric energy (kcal mol−1), total energy (hartrees), group count
(amines), group count (carboxyls), group count (ethers), group
count (hydroxyls), group count (methyls), heat of formation
(kcal mol−1), HOMO energy (eV), ionization potential (eV),
λmax UV–visible (nm), λmax far-UV–visible (nm), logP,
LUMO energy (eV), molar refractivity, molecular weight,
polarizability, ring count (all rings), size of smallest ring, size
of largest ring, and solvent-accessible surface area (Å2).

QSAR model for cytotoxic activity against the lung cancer
cell line (A-549)

To develop a QSAR model for predicting cytotoxic activity
against the lung cancer cell line A-549, a training set con-
taining 36 drugs/compounds was devised, and 50 chemical
descriptorswere included duringmodel development (Table 1).
Forward stepwise multiple linear regression QSAR modeling
was performed using a leave-one-out approach to validation. It
was observed that the cytotoxic drugs/compounds in the
training set were fitted well by this model. Three molecular
descriptors—LUMO energy (eV), ring count (all rings), and
solvent-accessible surface area (Å2)—were significantly
correlated with anticancer activity:

Predicted log IC50ðμMÞ
¼ þ0:671301� LUMO energy eVð Þ

� 0:31319� ring count all ringsð Þ
� 0:00276924� solvent accessibility surface area )

2
� �

þ 4:07115

r2 ¼ 0:852225 and rCV2 ¼ 0:800499
� �

:

ð1Þ

This QSAR model equation shows that there is a relation-
ship between in vitro experimental activity (IC50) as the
dependent variable and the three chemical descriptors men-
tioned above as independent variables. The regression coeffi-
cient r200.85 indicates 85% correlation between the activities
and the chemical descriptors of the training data set com-
pounds, while the crossvalidation regression coefficient
rCV200.80, meaning that the prediction accuracy of the
QSAR model is 80% (Fig. 1). It is evident from the above
equation that among the molecular descriptors, LUMO energy
(eV) is positive correlated with activity, i.e., if LUMO energy
increases the biological activity against the lung cancer cell
line also increases. On the other hand, the ring count (all rings)
and solvent-accessible surface area (Å2) are both negatively
correlated with activity, meaning that the biological activity
decreases if these descriptors increase.

QSAR model for cytotoxic activity against the CNS cancer
cell line (SF-295)

To develop a QSAR model for predicting cytotoxic activity
against the CNS cancer cell line SF-295, a training set
containing 26 drugs/compounds was produced, and 50
chemical descriptors were included during model develop-
ment (Table 2). Forward stepwise multiple linear regression
QSAR modeling was performed using a leave-one-out ap-
proach to validation. It was observed that the cytotoxic
drugs/compounds in the training set were fitted well by this
model. Two molecular descriptors—dipole vector Z (debyes)
and solvent-accessible surface area (Å2)—were significantly
correlated with anticancer activity:

Predicted log IC50ðμMÞ
¼ þ0:0777154� dipole vector Z debyeð Þ

þ 0:0118329� solvent accessibility surface area )
2

� �

� 4:11523

r2 ¼ 0:987508 and rCV2 ¼ 0:962561
� �

:

ð2Þ

This QSAR model equation shows that there is a rela-
tionship between in vitro experimental activity (IC50) as the
dependent variable and the two chemical descriptors men-
tioned above as independent variables. The regression coef-
ficient r200.98 indicates 98% correlation between the
activities and the chemical descriptors of the training data
set compounds, while the crossvalidation regression coeffi-
cient rCV200.96, meaning that the prediction accuracy of
the QSAR model is 96% (Fig. 2).

Fig. 1 Graph of experimental vs. predicted activities for the training
and test set molecules from the multiple stepwise linear regression
model. Training set is denoted by black dots and the test set by red dots
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HUMO–LUMO energy calculation of virtually active
analogs of ursolic acid

Further QSAR modeling were supported by a theoretical
approach that was used to correlate electronic indices to the
biological activity, and which derived a simple rule for
predicting the biological activities of ursolic acid deriva-
tives, a novel class of inhibitors of osteoclast formation.
This approach considered the energy separation of the fron-
tier molecular orbitals and their relative contributions to the
local density of electronic states in specific molecular
regions [17]. In order to further explore structure–activity
relationships, a preliminary study involving semiempirical
and ab initio calculations of the locations and the relative
energies of the frontier molecular orbitals—namely the
HOMO (the highest occupied molecular orbital) and the
LUMO (the lowest unoccupied molecular orbital)—in all
of the virtually active analogs of ursolic acid was performed,
by calculating optimized geometries inMO-G [20, 21, 23–25]
using PM3 parameters.

Screening for druglikeness using pharmacokinetic
properties

The ideal oral drug is one that is rapidly and completely
absorbed in the gastrointestinal tract, is distributed specifi-
cally to its site of action in the body, is metabolized in a way
that does not instantly remove its activity, and is eliminated
in a suitable manner, without causing any harm. It is
reported that around half of all developed drugs fail to make
it to the market due to poor pharmacokinetic (PK) properties
[26]. PK properties depend on the chemical properties of the
molecule. PK properties such as absorption, distribution,
metabolism, excretion, and toxicity (ADME) are important

factors in the success of the compound for human therapeu-
tic use [27–29]. To screen for potential druglike leads,
different PK properties of the ursolic acid analogs were
analyzed. The importance of some of these ADME proper-
ties is summarized here to aid reader comprehension. Polar
surface area is considered a primary determinant of fraction
absorbed [30]. The relation between low molecular weight
of the compound and oral absorption has been considered
[31]. The distribution of the compound in the human body
depends on factors such as the blood–brain barrier (BBB),
permeability, volume of distribution, and plasma protein bind-
ing [32], so these parameters were calculated. The octanol–
water partition coefficient has been implicated in BBB
penetration and in permeability prediction, as has the
polar surface area [33]. It has been reported that the
excretion process, which eliminates the compound from
the human body, depends on the molecular weight and
the octanol–water partition coefficient. Similarly, rapid
renal clearance is associated with small and hydrophilic
compounds. The metabolism of most drugs in the liver is
associated with large, hydrophobic compounds [34]. High
compound lipophilicity leads to increased metabolism and
poor absorption, along with an increased probability of bind-
ing to undesirable hydrophobic macromolecules, thereby
increasing the potential for toxicity [33]. In spite of some
observed exceptions to Lipinski’s rule, the values of the PK
properties of the vast majority (90%) of orally active com-
pounds are within their cut-off limits [35, 36]. Molecules that
violate more than one of these rules may have problems with
bioavailability. Lipinski’s “rule of five” was used to study the
PK properties of the ursolic acid analogs considered here, in
order to determine their druglikeness. Briefly, this rule is
based on the observation that most orally administered drugs
have a molecular weight (MW) of 500 or less, a logP of no
higher than 5, five or fewer hydrogen-bond donor sites, and
ten or fewer hydrogen-bond acceptor sites (N and O atoms). In
addition, the bioavailability of each derivative was assessed
through topological polar surface area analysis. We calculated
the polar surface area (PSA) using a method based on sum-
ming the tabulated surface contributions of polar fragments,
termed topological PSA (TPSA) (ChemAxon-Marvinview
5.2.6: PSA plugin [37]). The PSA contributed by the polar
atoms of the molecule. This descriptor was shown to correlate
well with passive molecular transport through membranes, so
it allows the transport properties of drugs to be predicted, and
has been linked to drug bioavailability. The percentage of the
dose that reaches the circulation is called the bioavailability.
Generally, passively absorbed molecules with PSA>140 Å2

are thought to have low oral bioavailabilities [28, 37]. The
number of rotatable bonds is another simple topological
parameter used by researchers under an extended Lipinski’s
rule as measure of molecular flexibility. It has been shown to
be a very good descriptor of oral drug bioavailability [38]. A

Fig. 2 Graph of experimental vs. predicted activities for the training
and test set molecules from the multiple stepwise linear regression
model. Training set is denoted by black dots and the test set by red dots
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rotatable bond is defined as any single nonring bond to a
nonterminal, heavy (i.e., nonhydrogen) atom. Amide C–N
bonds are not considered to be rotatable because of their high
rotational energy barriers. Moreover, some researchers also
include the sum of H-bond donors and H-bond acceptors as a
secondary determinant of fraction absorbed. The primary
determinant of fraction absorbed is polar surface area [30,
39]. According to the extended rule, the sum of H-bond
donors and acceptors should be ≤12 or the polar surface area
should be ≤140 Å2, and the number of rotatable bonds should
be ≤10 [37]. Calculations of other important ADME properties
of ursolic acid analogs were performed using QikProp
(version 3.2, Schrödinger, LLC, San Diego, CA, USA,
2009). We also screened for active ursolic acid analogs using
Jorgensen’s rule of three, which state that logS should be more
than −5.7, PCaco should be >22 nm/s, and the number of
primary metabolites should be <7 (Schrödinger). It is assumed
that ursolic acid analogs that do not violate Jorgensen’s rule
are more likely to be orally available.

General experimental procedure

300 MHz 1H and 75 MHz 13C NMR spectra of the analogs
were recorded on a Bruker (Billerica, MA, USA) 300 spec-
trometer in either C5D5N or CDCl3 solution. The chemical
shifts are presented in this work as ppm with tetramethylsi-
lane (TMS) used as the internal reference, and J values are
reported in hertz. Carbon atom types (C, CH, CH2, CH3)
were determined via DEPT pulse sequence. Silica gel G or
H (Merck, Whitehouse Station, NJ, USA) was used for
TLC, VLC, and flash chromatography. Reactions that re-
quired an inert atmosphere were carried out under N2 with

oven-dried glassware. All amines were purchased from
Spectrochem (Mumbai, India), and all alcohols were pur-
chased from Thomas Baker Pvt. India Ltd. (Mumbai, India).
All reactions were monitored by TLC on precoated Merck
60 F254 silica gel. All spots on the TLC plates were visualized
with a spray reagent [vanillin–ethanol sulfuric acid (1 g:
95 ml: 5 ml)] and then heated for 5–10 min at 110 °C.

Plant material

To isolate ursolic acid, leaves of E. hybrid were collected
from the medicinal farm of the Central Institute of Medicinal
and Aromatic Plants (CIMAP, Lucknow, Uttar Pradesh,
India) during January 2008. A voucher specimen (CIMAP
no. 12470) has been deposited in the herbarium section of
the Botany Department of CIMAP.

Extraction and isolation of ursolic acid

The leaves of E. hybrid were air dried under shade and then
powdered. Extraction and fractionation of the leaves was
carried out as shown in Fig. 3. The powdered material
(1.3 kg) was defatted with hexane (4 × 6 L, 24 h each) at
room temperature, which yielded a hexane extract (4 g). The
defatted material was then further extracted with methanol
(4 × 5 L) and left the residual part, termed as Marc. The
combined methanol extract was subjected to complete sol-
vent removal at 40 °C under vacuum. This dried methanolic
extract was dissolved in distilled water (2 L) and succes-
sively extracted with hexane and ethyl acetate (4 × 400 ml).
The combined hexane and ethyl acetate extracts were sepa-
rately subjected to vacuum distillation at 40 °C, which

$Washed with H2O and dried over anhydrous Na2SO4. *Solvent was completely removed under 
vacuum at 60 °C on Buchi Rota Vapour. #Solvent removed under vacuum by making azeotrop 
with H2O

Eucalyptus hybrid leaves (1.3K) 
          Defatted with n-Hexane 

Defatted plant material n-
Extracted with MeOH

Marc MeOH extract
Dissolved in distilled H2O 

Aqueous extract
Extracted with n-Hexane 

Aqueous extract n-Hexane extract
(2.0g) Extract with EtOAc  

Aqueous extract 
EtOAc extract (45g)

Extract with n-butanol saturated with H2O
n-Butanol extract(31.0g) 

UA (1.0g)

Hexane extract(4.0g) 

Fig. 3 Schematic procedure for
the extraction and fractionation
of Eucalyptus hybrid leaves
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yielded hexane (2 g) and ethyl acetate (45 g) extracts,
respectively. To isolate the ursolic acid, the EtOAc extract
(7 g) was separated using vacuum liquid chromatography
(VLC) with silica gel H (150 g, average particle size 10 μm,
G1 104 × 90 mm).

Gradient elution of VLC was carried out with hexane,
chloroform, chloroform, and methanol in various propor-
tions. Fractions of 50 ml were collected, and a total of
284 fractions were collected. Fractions were pooled

based on their TLC (SiO2, chloroform: methanol 9:1
and 9:3; vanillin–sulfuric acid) profile. The VLC frac-
tions 175–182 (1.5 g) that eluted with CHCl3 (100%)
were crystallized with the aid of chloroform, and the
crystals were washed with hexane and filtered under
vacuum, which resulted in the isolation of 1 g of pure
white crystals. The TLC profile of the crystalline product
was very similar to that of an authentic sample of ursolic
acid in a different solvent system, and was therefore

OH
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H

1
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Dry DCM, Flush N2

Stirring for 3 Hrs.

H COCl

H

H

c) ROH, TEA, Flush N2

Reflux 3-4 Hrs.

Reflux 3-4 Hrs.

2  R  = CH 3

3 R = CH 2CH 3

     1 '         2 '

4 R= CH(CH 3)2

1'        2 '-3 '

5  R  = CH 2CH 2CH 3

1'      2 '       3 '

6 R = CH 2 (CH 2)2CH 3
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H

H
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H

H

H

H

H

CONHRH

H

H
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1'         (2 '-7 ')           8 '

9 R =     1 ' B r

2'     3 '

4'

6 '     5 '

a) Ac2O, Dry Pyridine

d) RNH2, TEA, Flush N2

Fig. 4 Semisynthesis of ester and amide derivatives of ursolic acid
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characterized as ursolic acid on the basis of its spectro-
scopic data [40].

Semisynthesis of virtually active analogs of ursolic acid

In order to validate the developed QSAR models, the pre-
dicted virtually active analogs of ursolic acid (2–9, Fig. 4)
were semisynthesized in the lab according to the procedures
reported [17, 41]. For the semisynthesis of ester and amide
analogs of ursolic acid (UA-1) in alkaline conditions, the
hydroxyl group of UA-1 was protected with acetate. The
protected 3-O-acetylursolic acid was obtained by reacting
UA-1 with acetic anhydride (2 equiv.) in the presence of dry
pyridine. To prepare the acid chloride, the 3-O-acetylursolic
acid was reacted with oxalyl chloride (1–2 equiv.) in dry
dichloromethane (DCM) under an N2 atmosphere. After 3 h
of stirring, the respective dry alcohols (1.5 equiv.) for esters
or dry amines (1.5 equiv.) for amides were added under a
nitrogen atmosphere. The resulting airtight reaction mixture
was refluxed for 3-4 h, which resulted in the formation of
the desired ester and amide analogs. The products were
further purified by column chromatography, which afforded
the desired analogs in yields of 65–80%. All the analogs
were characterized on the basis of their 1H and 13C NMR
spectroscopic data.

Cytotoxicity assay

The human lung (A-549) and CNS (SF-295) cancer cell
lines were procured from the National Cancer Institute
(Frederick, MD, USA). Cells were grown in tissue culture
flasks in complete growth medium (RPMI-1640 medium
with 2 mM glutamine, pH 7.4, supplemented with 10% fetal
calf serum, 100 μg/mL streptomycin, and 100 IU/mL pen-
icillin) in a carbon dioxide incubator (37 °C, 5% CO2, 90%
RH). The cells at the subconfluent stage were harvested
from the flask by treatment with trypsin [0.05% in
PBS (pH 7.4) containing 0.02% EDTA]. Cells with a
viability of more than 98%, as determined by trypan
blue exclusion, were used to determine cytotoxicity. A
cell suspension of 1 × 105 cells/mL was prepared in
complete growth medium. Stock solutions (2 × 10−2 M)
were prepared in 20% pyridine+80% DMSO. A suitable
control with appropriate concentrations of pyridine and
DMSO was used for comparison. The stock solutions
were serially diluted with complete growth medium
containing 50 μg/mL of gentamycin to obtain a working
test solution of 1 × 10−4 M.

The in vitro cytotoxicities of UA-1 and its analogs UA-2
to UA-9 against the five cancer cell lines were determined
using 96-well tissue culture plates [42]. One hundred micro-
liters of cell suspension were added to each well of the 96-
well tissue culture plates. The cells were allowed to grow in

a CO2 incubator (37 °C, 5% CO2, 90% RH) for 24 h. Test
materials in complete growth medium (100 μL) were added
after 24 h incubation to the wells containing cell suspension.
The plates were further incubated for 48 h (37 °C, 5% CO2

and 90% RH) in a carbon dioxide incubator. Cell growth
was stopped by gently layering trichloroacetic acid (50%
TCA, 50 μL) on top of the medium in all of the wells. The
plates were incubated at 4 °C for 1 h to fix the cells attached
to the bottom of the wells. The liquid from all of the wells
was gently pipetted out and discarded. The plates were
washed five times with distilled water to remove TCA,
growth medium, low molecular weight metabolites, and
serum proteins, and air dried. Cell growth was measured
by staining with sulforhodamine B dye (0.4 % w/v in 1%
acetic acid) [43]. The adsorbed dye was dissolved in
Tris-HCl buffer (100 μL, 0.01 M, pH 10.4) and the
plates were gently stirred for 10 min on a mechanical
stirrer. The optical density (OD) was recorded on an
ELISA reader at 540 nm. Anticancer activity results of UA-1
and its analogs (UA-2 to -9) are presented in Table 3 after
deducting the cytotoxic effect of the vehicle (20% pyridine+
80% DMSO) at equivalent concentration.

Results and discussion

In the present work, we first calculated most of the physico-
chemical properties (descriptors) of compounds/drugs that
have been experimentally shown to possess anticancer activity
against human lung (A-549) and CNS (SF-295) cancer cell
lines for the training set. Further, we carried out forward

Table 3 Predicted anticancer activities (IC50 in μM) of UA-1 and its
virtual analogs (UA-2 to -14) against the lung cancer cell line A-549

Serial number Compound name Predicted log IC50

(μM) vs. A-549

1 UA-1 1.346

2 UA-2 1.259

3 UA-3 1.232

4 UA-4 1.202

5 UA-5 1.171

6 UA-6 1.095

7 UA-7 1.064

8 UA-8 −0.086

9 UA-9 −0.233

10 UA-10 1.672

11 UA-11 1.514

12 UA-12 1.364

13 UA-13 1.802

14 UA-14 1.721
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Fig. 5 Structures of the predicted ursolic acid derivatives
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stepwise multiple linear regression analysis and identified the
highly correlated properties responsible for the anticancer
activity against the above lung and CNS cancer cell lines. To
validate the derived QSAR model, we used a leave-one-out
(LOO) approach and evaluated the QSAR model through test
data sets (see ESM files 3 and 4), which indicated that the
model has significant accuracy. These data were also sup-
ported by HUMO–LUMO energy-minimization geometric
parameters. Further, experiments were carried out to isolate
ursolic acid from the leaves of E. hybrid. Later on, the isolated
ursolic acid was used for the semisynthesis of the predicted
virtual analogs of UA-1. All of the semisynthetic analogs of
ursolic acid were characterized on the basis of their 1H and 13C

NMR spectroscopic data. Finally, the semisynthetic analogs of
UA-1 were evaluated in vitro for their anticancer activities
against the human lung (A-549) and CNS (SF-295) cancer cell
lines in order to validate their predicted activities.

Virtual screening of ursolic acid analogs for cytotoxic
activity against the lung cancer cell line A-549

After developing a validated QSAR model for activity
against the lung cancer cell line, we screened ursolic acid
(UA-1) and 13 of its virtual analogs (UA-2 to -14) (Fig. 5),
and the results are presented in Table 3. They show that all
of the analogs are active against the human lung cancer cell
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line (A-549), but among the 13 analogs, eight (UA-2 to -9)
were more active. Further, careful analysis of the most
active analogs showed that the 4-bromoanilamideursolic
acid analog UA-9 was the most active of all, and possesses
higher cytotoxic activity than the control drug adriamycin.

Virtual screening of ursolic acid analogs for cytotoxic
activity against the CNS cell line SF-295

After developing a validated QSAR model for activity
against the CNS cancer cell line, we screened ursolic acid
(UA-1) and 26 of its virtual analogs (UA-15 to -32) (Fig. 5),
and the results are presented in Table 4. They showed that
all of the analogs are active against the human CNS cancer
cell line (SF-295), but among the 26 analogs, eight (UA-2 to
-9) were more active. Further, careful analysis of the most
active analogs showed that the methyl and ethyl ester ana-
logs of ursolic acid (UA-2 and -3) were the most active of

all, and possess higher cytotoxic activity than the control
drug cisplatin.

HUMO–LUMO energy calculations for the virtually active
analogs of ursolic acid

HUMO–LUMO energy calculations for all of the virtually
active analogs of ursolic acid were performed via geometry
optimization calculations in MO-G using PM3 parameters
(Table 5). The results showed that two analogs, UA-2 and
UA-9, of ursolic acid exhibited strong biological activities
and higher orbital energies than the other analogs, but large
differences in the locations and the relative energies of the
HOMO and LUMO (EHOMO and ELUMO) were observed.

For UA-9, the HOMO was mainly located on the double
bond of ring C and partially on ring D, while the LUMO
was mainly located on the double bond of ring E and
partially on the side chain of ring D. UA-9 possessed a
higher EHOMO than UA-2 and UA-8 (Table 5). This com-
pound, which has potent anticancer activity, has a high
EHOMO, which accounts for its electron-donating ability. A
graphical representation of the HOMO and LUMO of UA-9
is given in Fig. 6. These results suggest that conversion of
ursolic acid into derivatives having electron donating groups
such as in UA-9 will have strong impact on the energies and
locations of the HOMO and LUMO hence, the compound
with the highest EHOMO would have the most potent activity.

From the above, we can conclude that the energy of the
HOMO and the energy difference between the HOMO and
LUMO are important and related to the anticancer activity
of the analog. Further, the energy of the highest occupied
molecular orbital (EHOMO) has a significant effect on the
activity, as the energy of the HOMO is directly related to the
ionization potential of the analog, and characterizes the
susceptibility of the molecule to electrophilic attack. The
above ursolic acid analogs tend to lose a pair of electrons to
an electrophile, and are thus soft nucleophiles. It can also be
concluded that the HOMO–LUMO energy gap plays a

Table 4 Predicted anticancer activities (IC50 in μM) of UA-1 and its
virtual analogs (UA-15 to -32) against the CNS cancer cell line SF-295

Serial number Compound name Pred. log IC50

(μM) vs. SF-295

1 UA-1 0.652

2 UA-2 1.455

3. UA-3 1.446

4 UA-4 1.978

5 UA-5 1.641

6 UA-6 1.967

7 UA-7 1.86

8 UA-8 2.206

9 UA-9 2.019

10 UA-15 2.331

11 UA-16 2.222

12 UA-17 2.783

13 UA-18 2.431

14 UA-19 2.344

15 UA-20 2.642

16 UA-21 2.62

17 UA-22 2.239

18 UA-23 2.296

19 UA-24 2.43

20 UA-25 2.511

21 UA-26 2.473

22 UA-27 2.688

23 UA-28 2.475

24 UA-29 3.916

25 UA-30 2.413

26 UA-31 5.162

27 UA-32 2.363

Table 5 Energies of the frontier molecular orbitals of ursolic acid
derivatives with biological activities in μM against CNS and Lung
cancer cell lines

Compound EHOMO (eV) ELUMO (eV) CNS(SF-295) Lung(A-549)

UA-9 −9.304 −0.299 87 77

UA-2 −9.317 1.109 64 59

UA-4 −9.333 0.904 11 0

UA-8 −9.365 0.901 28 0

UA-7 −9.422 0.846 5 16

UA-5 −9.524 0.896 3 0

UA-6 −9.540 0.858 0 8

UA-3 0 0 8 17
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significant role in antitumor activity. The HOMO–LUMO
energy gap is an important stability index. As the above
ursolic acid analogs have large HOMO–LUMO energy
gaps, these compounds are very reactive in interactions
and have high excitation energy. Further studies may clarify
the relationship between the electronic structure and activity,
thus providing better guidance when synthesizing a more
potent analog.

Pharmacokinetic studies of bioavailability

During the 1990s, the pharmaceutical industry noticed that
too many compounds were being terminated during clinical
development due to unsatisfactory pharmacokinetics (PK).
Thus, it is essential to consider PK parameters during lead
optimization. PK properties such as absorption, distribution,
metabolism, excretion, and toxicity (ADMET) are important
influences on the success of the compound for human ther-
apeutic use. Therefore, we considered several physiochem-
ical properties related to the PK while screening the active,
druglike compounds. Lipophilicity (the ratio of the solubil-
ity of the analog in octanol compared to its solubility in
water), as measured through logP, was found to be quite
high for all of the designed compounds. LogP has been
implicated in blood–brain barrier penetration, as well as
permeability; the excretion process that eliminates the com-
pound from the human body also depends on logP as well as
the molecular weight. Except for ursolic acid, all of the
analogs have high molecular weights, so they are likely to
have low solubilities and to pass through cell membranes
with difficulty. Ursolic acid, which has an intermediate
value for the lipophilicity, has a better chance of arriving
at the receptor site. The analogs have limited polarity to aid
with permeation and absorption, as revealed by their H-bond
donors and H-bond acceptors.

All of the studied analogs have low oral bioavailabilities
because they violate Lipinski’s rule of five by two parame-
ters: they have high logP values and molecular weights
(Table 6). Moreover, when we calculated the topological

Table 6 Compliance of the ursolic acid derivatives with the recommended ranges of computed bioavailability parameters and druglikeness
properties

Compound Pharmacokinetic properties (ADME) that are dependent on chemical descriptors Rule of five
violation

ADM AE ADME AD

Oral bioavailability:
TPSA (Å2)

MW logP H-bond donor H-bond acceptor

Aminegroup
count

sec-amine
group count

Hydroxyl
group count

Nitrogen
atom count

Oxygen
atom count

UA-7 52.60 568.879 8.913 0 0 0 0 4 2

UA-9 43.37 637.739 9.658 0 0 0 0 3 2

UA-6 52.60 554.852 8.582 0 0 0 0 4 2

UA-3 52.60 526.798 7.718 0 0 0 0 4 2

UA-4 52.60 540.825 8.131 0 0 0 0 4 2

UA-2 52.60 512.771 7.375 0 0 0 0 4 2

UA-8 52.60 610.959 10.168 0 0 0 0 4 2

UA-5 52.60 540.825 8.186 0 0 1 0 4 2

UA-1 57.53 45.707 7.214 0 0 1 0 3 1

A absorption, D distribution, M metabolism, E excretion, TPSA topological polar surface area, MW molecular weight, logP octanol/water partition
coefficient

Fig. 6 Comparison of the frontier molecular orbitals (HOMO and
LUMO) of compound UA-9
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polar surface area (TPSA) as a chemical descriptor for
passive molecular transport through membranes, the results
showed that their TPSA values are <140 Å2. Generally,
passively absorbed molecules with TPSA values of >140 Å2

have low oral bioavailabilities. Calculations related to aque-
ous solubility, serum protein binding, the blood–brain barrier
(log BB and apparent MDCK cell permeability), the
gut–blood barrier (Caco-2 cell permeability), predicted
central nervous system activity, number of likely metabolic
reactions, log IC50 for HERG K+ channel blockage, transder-
mal transport rate (Jm), skin permeability (Kp), and human oral
absorption in the gastrointestinal tract showed that the active
ursolic acid derivatives had values for these parameters that
were within the standard ranges of drugs (Table 7). Based on
bioavailability and in silico ADME screening (Table 6), we
concluded that ursolic acid and its derivative UA-9 have
marked cytotoxic activities.

Chemistry

Chemical structure–activity relationship

A total of 31 virtual analogs of ursolic acid (UA 2-32) were
evaluated for their anticancer activities using QSAR models
of activity against human lung (A-549) and CNS (SF-295)
cancer cell lines, followed by HUMO–LUMO energy min-
imization. From the results shown in Table 3 and 4, it is
evident that virtual analogs UA-2 to UA-9 are more active
against the lung (A-549) as well as CNS (SF-295) cancer
cell lines. Thus, we carried out semisynthesis of these
ursolic acid analogs (UA-2 to -9) in the wet lab. The penta-
cyclic base moiety of ursolic acid was used as a pharmaco-
phore, and its 3-hydroxy and 28-oic acid groups were used
to add flexibility to the molecule. The detailed method used
for the semisynthesis of ursolic acid analogs (UA-2 to -9) was

Table 7 Compliance of the ursolic acid derivatives with the recommended ranges of computed pharmacokinetic parameters (ADME)

Principal descriptors UA-1 UA-7 UA-9 UA-6 UA-3 UA-4 UA-2 UA-8 UA-5 Standard range*

logS for aqueous solubility −7.003 −10.030 −10.439 −9.824 −9.126 −9.445 −9.083 −9.756 −9.823 −6.5 / 0.5

logKhsa for serum protein binding 1.383 2.542 2.548 2.472 2.222 2.355 2.121 2.697 2.387 −1.5 / 1.5

log BB for brain/blood barrier −0.439 −0.267 −0.048 −0.289 −0.225 −0.385 −0.204 −0.633 −0.307 −3.0 / 1.2

No. of primary metabolites 3 2 2 2 2 2 2 2 2 1.0 / 8.0

Predicted CNS activity − +/− +/− +/− +/− +/− +/− +/− +/− –2 (inactive),+2 (active)

log IC50 for HERG K+ channel
blockage

−1.855 −4.684 −5.158 −4.605 −4.387 −4.417 −4.481 −4.401 −4.736 Below −5 is a concern

Apparent Caco-2 permeability (nm/s) 278 3187 2585 3013 2536 1784 2367 2316 2591 <25 poor, >500 great

PMDCK permeability (nm/s) 157 1732 3667 1630 1352 925 1255 1226 1384 <25 poor, >500 great

logKp for skin permeability −3.132 −1.951 −1.920 −2.023 −2.335 −2.633 −2.488 −1.869 −2.216 –8.0 to –1.0, Kp in cm/hr

Jm for the max transdermal
transport rate

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 μg/(cm2 h)

Lipinski’s rule of five violations 1 2 2 2 2 2 2 2 2 Maximum is 4

Jorgensen’s rule of three violations 1 1 1 1 1 1 1 1 1 Maximum is 3

% Human oral absorption in GI
tract (±20%)

94 100 100 100 100 100 100 100 100 <25% is poor

Qualitative model for human oral
absorption

Low Low Low Low Low Low Low Low Low >80% is high

* For 95% of known drugs, based on –Qikprop v.3.2 (Schrödinger, LLC, 2009) software results.

logS is the predicted aqueous solubility. S (in mol dm−3 ) is the concentration of the solute in a saturated solution that is in equilibrium with the
crystalline solid. log HERG is the predicted IC50 value for the blockage of HERG K+ channels. PCaco is the predicted apparent Caco-2 cell
permeability (in nm/s). Caco-2 cells are a model for the gut–blood barrier (for non-active transport). log BB is the predicted brain/blood partition
coefficient. QikProp performs predictions for drugs delivered orally, so, for example, dopamine and serotonin are CNS negative because they are
too polar to cross the blood–brain barrier. PMDCKis the predicted apparent MDCK cell permeability (in nm/s). MDCK cells are considered to be a
good model for the blood–brain barrier (for non-active transport). logKp is the predicted skin permeability. logKhsais the predicted binding to human
serum albumin. Human oral absorption is the predicted qualitative human oral absorption. It is assessed according to a knowledge-based set of
rules, which include checking for suitable values of percent human oral absorption, number of metabolites, number of rotatable bonds, logP,
solubility, and cell permeability. Percent human oral absorption is the predicted human oral absorption on a scale of 0–100%. It is predicted using a
quantitative multiple linear regression model. This property usually correlates well with human oral absorption, as both measure the same property.
Jm is the predicted maximum transdermal transport rate, Kp × MW × S (μg cm−2 h−1 ). Kp and S are obtained from the aqueous solubility and skin
permeability. In Jorgensen’s rule of three, the three rules are: QPlogS>−5.7, QP.PCaco>22 nm/s, number of primary metabolites<7. Compounds
with fewer (and preferably no) violations are more likely to be orally available. No. of primary metabolites is the number of likely metabolic
reactions. Qualitative Model for human oral absorption-This descriptor was used to indicate ‘Qualitative QSAR model based prediction of human
oral absorption’
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discussed in the “Materials and methods” section. The 13C
NMR chemical shift assignments for the derivatives are
shown in Table 8, while the 1H NMR and MS data for the
derivatives are shown in the ESM (file 5).

The cytotoxic activities of ursolic acid (UA-1) and its
semisynthetic ester (UA-2 to -7) and amide (UA-8 to -9)
derivatives were tested against the various cancer cell lines,

and the results are presented in Table 9; the corresponding
values for paclitaxel, adriamycin, and mitomycin are also
included in the table for comparison, as they are standard
anticancer drugs. All of the the compounds showed cytotox-
icity against the two cancer cell lines. Ursolic acid (UA-1)
itself showed significant activity against both the human
lung (A-549) and CNS (SF-295) cancer cell lines. From

Table 8 13C NMR chemical
shift assignments for UA-1 and
its derivatives UA-1b and UA-2
to UA-9

C UA-1 UA-1b UA-2 UA-3 UA-4 UA-5 UA-6 UA-7 UA-8 UA-9

C 1 39.5 39.7 39.7 39.7 39.7 39.7 39.7 39.7 39.5 39.5

C 2 28.3 24.0 28.5 28.4 28.3 28.0 28.3 28.3 28.3 28.3

C 3 78.7 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.2 81.2

C 4 39.9 38.1 39.9 39.8 39.8 39.8 39.9 39.9 39.9 39.9

C 5 56.3 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7 55.7

C 6 19.1 18.6 18.6 18.6 18.6 18.6 18.6 18.5 18.5 18.5

C 7 39.9 33.2 33.3 33.4 33.5 33.4 33.4 33.4 33.4 33.4

C 8 40.4 40.0 42.0 40.0 40.0 42.4 42.4 42.4 42.4 42.4

C 9 47.0 47.9 47.9 47.9 47.9 47.9 47.9 47.9 47.9 47.9

C 10 37.7 37.3 37.3 37.3 37.3 38.0 38.1 38.1 38.1 38.1

C 11 23.9 23.9 23.7 23.7 23.7 23.7 23.7 23.8 23.8 23.8

C 12 123.0 126.1 124.1 125.8 124.0 124.6 126.1 125.4 125.4 125.4

C 13 139.6 138.4 138.6 138.6 138.5 138.6 138.6 138.6 138.6 138.6

C 14 42.9 42.3 42.2 42.4 42.5 42.4 42.4 42.4 42.4 42.4

C 15 28.9 28.4 28.4 28.4 28.4 28.4 28.3 28.3 28.3 28.3

C 16 25.2 24.5 25.6 24.6 24.5 26.2 24.5 24.6 24.6 24.6

C 17 48.5 48.4 47.9 48.3 48.1 48.4 48.4 48.4 48.4 48.4

C 18 54.0 53.0 53.3 53.3 53.3 53.3 53.3 53.3 53.3 53.3

C 19 30.5 39.4. 39.4 39.4 39.5 39.4 39.5 39.5 39.5 39.5

C 20 39.7 39.2 39.2 39.2 39.3 39.3 39.3 39.3 39.3 39.3

C 21 31.3 31.0 31.0 31.0 31.1 31.1 31.1 31.1 31.1 31.1

C 22 37.6 37.1 37.1 37.1 37.0 38.7 37.7 37.2 37.2 37.2

C 23 29.0 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5

C 24 15.8 17.0 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1

C 25 16.4 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9

C 26 17.5 17.4 17.3 17.1 17.5 17.5 17.5 17.5 17.5 17.5

C 27 24.1 24.0 23.9 23.9 26.1 23.8 23.4 23.9 23.9 23.9

C 28 179.7 184.0 178.5 177.9 177.2 177.9 177.9 177.9 177.9 177.9

C 29 17.7 17.5 17.5 17.5 17.4 17.4 17.5 17.5 17.5 17.5

C 30 21.4 21.5 21.7 21.6 21.7 21.7 21.6 21.6 21.6 21.6

C 31 171.4 171.4 171.4 171.4 171.4 171.2 171.3 178.3 178.3

C 32 21.4 21.6 21.4 21.5 21.4 21.5 21.5 21.5 21.5

C 1′ 51.8 60.4 67.2 66.4 67.1 67.9 40.1 110.1

C 2′ 21.7 21.1 39.9 64.3 37.9 33.2 116.8

C 3′ 22.2 11.0 19.9 25.6 32.2 131.6

C 4′ 13.9 16.5 29.6 145.4

C 5′ 11.2 29.5

C 6′ 27.21

C 7′ 22.9

C 8′ 14.4
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Table 9, it is evident that UA-9 is 5–7 times more active than
the starting material UA-1 against the human lung (A-
549) and CNS (SF-295) cancer cell lines, as calculated by the
QSAR model.

Further, it is worth mentioning that UA-9 is 1.7 times more
active than the anticancer drug mitomycin against the human
lung cancer cell line A-549, while it has almost the same level
of activity against the human lung (A-549) and CNS (SF-295)
cancer cell lines as the anticancer drug paclitaxel (Fig. 7).

We can therefore conclude that UA-9 possesses potential
activity against human lung (A-549) and CNS (SF-295)
cancer cell lines. Its activity should help us to identify and
prepare new active derivatives economically.

Conclusions

Molecular modeling calculations were used to predict the
potential cytotoxic activities of ursolic acid analogs. The

screening of the ursolic acid analogs using the derived
QSAR models showed that some of the UA analogs possess
significant anticancer activity, but these analogs violate
Lipinski’s rule, indicating low oral availability. Moreover,
when we calculated the TPSA as chemical descriptor for
passive molecular transport through membranes, the results
showed that the analogs complied with the standard range
TPSA<140 Å2. Based on bioavailability and in silico ADME
screening, we concluded that ursolic acid (UA-1) and its
4-bromoanalamideursolic acid analog (UA-9) have marked
cytotoxic activities. UA-9 was also prepared experimentally
from UA-1 via semisynthesis, and later evaluated for its
anticancer potential in vitro; it demonstrated promising activ-
ity against the human lung (A-549) and CNS (SF-295) cancer
cell lines. These results may be of great help in the develop-
ment of anticancer drugs from a very common, inexpensive,
and nontoxic natural product.
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